
Point Cloud Processing via Recurrent Set Encoding

Pengxiang Wu1, Chao Chen2, Jingru Yi1, Dimitris Metaxas1
1Department of Computer Science, Rutgers University, NJ, USA, {pw241, jy486, dnm}@cs.rutgers.edu

2Department of Biomedical Informatics, Stony Brook University, NY, USA, chao.chen.cchen@gmail.com

Abstract

We present a new permutation-invariant network for 3D point
cloud processing. Our network is composed of a recurrent
set encoder and a convolutional feature aggregator. Given an
unordered point set, the encoder firstly partitions its ambi-
ent space into parallel beams. Points within each beam are
then modeled as a sequence and encoded into subregional ge-
ometric features by a shared recurrent neural network (RNN).
The spatial layout of the beams is regular, and this allows the
beam features to be further fed into an efficient 2D convolu-
tional neural network (CNN) for hierarchical feature aggrega-
tion. Our network is effective at spatial feature learning, and
competes favorably with the state-of-the-arts (SOTAs) on a
number of benchmarks. Meanwhile, it is significantly more
efficient compared to the SOTAs.

Introduction
Point cloud is a simple and compact geometric representa-
tion of 3D objects, and has been broadly used as the stan-
dard output of various sensors. In recent years, the analysis
of point clouds has gained much attention due to its wide ap-
plication in real world problems such as autonomous driving
(Chen et al. 2017), robotics (Kehoe et al. 2015), and naviga-
tion (Liu 2016). However, it is nontrivial to solve such tasks
using traditional deep learning tools, e.g., convolutional neu-
ral networks (CNNs). Unlike a 2D image with regularly
packed pixels, a point cloud consists of sparse points with-
out a canonical order. Moreover, the spatial distribution of a
point cloud is heterogeneous due to factors in data acquisi-
tion, e.g., perspective effects and radial density variations.

Due to the 3D nature of the problem, various methods
have been proposed to convert a point cloud into a 3D vol-
umetric representation, to which 3D CNNs are then applied
(Wu et al. 2015; Maturana and Scherer 2015b). However,
despite their success in analyzing 2D images, CNNs are not
satisfactory in this context. The commonly used 3D CNN is
extremely memory consuming, and thus can not be trained
efficiently. A more serious issue is that converting a point
cloud into a volumetric representation introduces quantiza-
tion artifacts and loses fine-scale geometric details.

Better performance has been achieved by deep networks
that avoid the volumetric convolutional architechture and

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

operate directly on point clouds. Representative works in-
clude PointNet (Qi et al. 2017a) and PointNet++ (Qi et al.
2017b), which process point clouds by combining multi-
layer perceptron (MLP) network with symmetric operations
(e.g., max-pooling) to learn point features globally or hierar-
chically. Inspired by PointNet, several recent methods have
been proposed to further improve the point feature represen-
tation (Shen et al. 2018; Xie et al. 2018; Li, Chen, and Lee
2018). This class of networks are invariant to input permuta-
tion and have achieved state-of-the-art results. However, due
to the reliance on the coarse feature pooling technique, they
fail to fully exploit fine-scale geometric details.

In this work, we aim to completely bypass the coarse
pooling-based technique, and propose a new deep network
for point cloud data. At the core of our method is a recurrent
set encoder, which divides the ambient domain into parallel
beams and encodes the points within each beam as subre-
gional geometric features with an RNN. Our key observa-
tion is that when the beam is of moderate size, the RNN is
approximately dealing with a sequence of points, as a beam
only contains points near a 1D line. Such a sequential in-
put largely benefits the learning of RNN. Meanwhile, notic-
ing that the beams are packed in a regular spatial layout, we
use a 2D CNN to further analyze the beam features (called
the convolutional feature aggregator). Being efficient and
powerful at feature learning, the 2D CNN can effectively
aggregate the subregional features into a global one, while
further benefiting the RNN learning in return. Our method
(see Fig. 1) is surprisingly efficient and effective for point
cloud processing. It is invariant to point order permutation,
and competes favorably with the state-of-the-arts (SOTAs)
in terms of both accuracy and computational efficiency.

A few recent works also adopt convolution for point
cloud processing. They typically utilize carefully designed
domain transformations to map point data into suitable
spaces, where convolution could be applied. Examples in-
clude SPLATNet (Su et al. 2018) and PCNN (Atzmon,
Maron, and Lipman 2018). However, these methods are in-
efficient as they rely on sophisticated geometric transforma-
tions and complex convolutional operations, e.g., continu-
ous volumetric convolution or sparse bilateral convolution.
In contrast, our method only employs regular spatial par-
titioning and sorting, and leverages classic neural network
architectures such as RNN and 2D CNN, which are well

Shared RNN

Shared RNN

Shared RNN

Shared RNN

Space
Partition

2D
Feature
Maps

C
on

v
3×3×

128
M

P
2×2

C
on

v
3×3×

128
C

on
v
3×3×

256
M

P
2×2

C
on

v
3×3×

256
C

on
v
3×3×

512
M

P
2×2

C
on

v
3×3×

512
FC

10
24

FC
25

6

FC
k

Output Scores
for

Classification
STN1

Sh
ar

ed
 F

C
64

Sh
ar

ed
 F

C
64

STN2

Tile

Cat

Sh
ar

ed
 F

C
51

2

Sh
ar

ed
 F

C
25

6

Sh
ar

ed
 F

C
12

8

Sh
ar

ed
 F

C
12

8

Sh
ar

ed
 F

C
m

Output Scores
for

Segmentation

Feature
Propagation

Figure 1: The architecture of RCNet. In the recurrent set encoder, the ambient space of input points is partitioned into parallel
beams, where the enclosed points are encoded by a shared RNN. The subregional features from each beam are later processed
by a 2D CNN. Depending on the tasks, the aggregated global features are fed forward directly for shape prediction, or tiled
and concatenated with the per-point features for semantic segmentation. The feature propagation refers to the operation that
propagates the non-local features within each beam to the corresponding component points. The other operations used are:
Conv (2D convolution), MP (2D max-pooling), FC (fully connected layer). Batchnorm and ReLU are used in all layers except
the last one, and the shared FC is applied per point. Numbers in parentheses represent the size of operation, and the hidden size
of RNN is 64 and 128 for classification and segmentation tasks, respectively. The STN block refers to the spatial transformer
network (Jaderberg et al. 2015; Qi et al. 2017a). It outputs a transformation matrix and is comprised of a shared MLP(64, 128,
1024), a global max-pooling and another MLP(512, 256, d2), where d is the number of features per input point.

supported at both software and hardware levels. As a re-
sult, our network circumvents much implementation over-
head and is significantly more efficient than these SOTAs in
computation. It is worth mentioning that, our recurrent set
encoder can be seen as a domain mapping function as well.
But unlike these SOTAs, it is automatically learned via back-
propagation instead of by careful handcrafted design.

In this work, we focus on point cloud classification and
segmentation tasks, and evaluate the proposed method on
several datasets, including ModelNet10/40 (Wu et al. 2015),
ShapeNet part segmentation (Yi et al. 2016), and S3DIS (Ar-
meni et al. 2016). Experimental results demonstrate the su-
perior performance of our method to the SOTAs in both ac-
curacy and computational efficiency.

In a nutshell, our main contributions are as follows:

• We present a new architecture that operates directly on
point clouds without relying on symmetric functions (e.g.,
max-pooling) to achieve permutation invariance.

• We propose a recurrent set encoder for effective subre-
gional feature extraction. To the best of our knowledge,
this is the first time an RNN is effectively employed to
model point clouds directly.

• We propose to introduce the 2D CNN for aggregating
subregional features. This design maximally utilizes the
strengths of CNN while further benefiting the RNN en-
coder. The resulting network is efficient as well as effec-
tive at hierarchical and spatially-aware feature learning.

Related Work
We briefly review the existing deep learning approaches for
3D shape processing, with a focus on point cloud setting.

Volumetric Methods One classical approach to handling
unstructured point clouds or meshes is to first rasterize
them into regular voxel grids, and then apply standard
3D CNNs (Wu et al. 2015; Maturana and Scherer 2015b;
2015a; Qi et al. 2016; Sedaghat, Zolfaghari, and Brox 2017;
Tchapmi et al. 2017; Liu et al. 2017). The major issue with
such volumetric representations is that they tend to produce
sparsely-occupied grids, which are unnecessarily memory-
consuming. Besides, the grid resolutions are limited due to
excessive memory and computational cost, causing quanti-
zation artifacts and loss of details. To remedy these issues,
recent methods propose to adaptively partition the grids and
place denser cells near the shape surface (Wang et al. 2017;
Riegler, Ulusoy, and Geiger 2017; Tatarchenko, Dosovit-
skiy, and Brox 2017). These methods suffer less from the
computational and memory overhead, but still lose geomet-
ric details due to sampling and discretization.

View-based Methods Another strategy is to encode the
3D shapes via a collection of 2D images which are rendered
from different views. These rendered images can be fed into
traditional 2D CNNs and processed via transfer learning,
i.e., fine-tuning networks pre-trained on large-scale image
datasets (Su et al. 2015; Qi et al. 2016; Kalogerakis et al.
2017). However, such view projections would lead to self-
occlusions and consequently severe loss of geometric infor-
mation. Moreover, view-based methods are mostly applied
to classification tasks, and are hard to generalize to detail-
focused tasks such as shape segmentation and completion.

Non-Euclidean Methods These approaches build graphs
from the input data (e.g., based on the mesh connectiv-
ity or k-nearest neighbor relationship), and apply CNNs to
the graph spectral domain for shape feature learning (Bron-

stein et al. 2017; Boscaini et al. 2015; Bruna et al. 2014;
Defferrard, Bresson, and Vandergheynst 2016; Kipf and
Welling 2017; Li et al. 2018). Graph CNN models are suit-
able for non-rigid shape analysis due to the isometry in-
variance. However, it is comparatively difficult to general-
ize these methods across non-isometric shapes with differ-
ent structures, largely because the spectral bases are domain-
dependent (Yi et al. 2017).

Point Cloud-based Methods PointNet (Qi et al. 2017a)
pioneers a new type of deep neural networks that act di-
rectly on point clouds without data conversions. Its key idea
is to learn per-point features independently, and then ag-
gregate them in a permutation-invariant manner via a sym-
metric function, e.g., max-pooling. While achieving impres-
sive performance, PointNet fails to capture crucial fine-scale
structure details. To address this issue, the follow-up work
PointNet++ (Qi et al. 2017b) exploits local geometric infor-
mation by hierarchically stacking PointNets. This leads to
improved performance, but at the cost of computational effi-
ciency. Besides, since PointNet++ still treats points individ-
ually at local scale, the relationships among points are not
fully captured. In light of the above challenges, a number
of recent works have been proposed for better shape model-
ing (Klokov and Lempitsky 2017; Li, Chen, and Lee 2018;
Shen et al. 2018; Huang, Wang, and Neumann 2018; Xie et
al. 2018; Wang et al. 2018). These methods overcome the
weakness of coarse pooling operation at some degree, and
achieve improved performance.

Another class of methods have been recently developed
without relying on pooling to guarantee permutation invari-
ance. They typically transform the point data into another
domain, where convolutions could be readily applied. In
SPLATNet (Su et al. 2018), the source point samples are
mapped into a high-dimensional lattice, where sparse bi-
lateral convolution is employed for shape feature learning.
In PCNN (Atzmon, Maron, and Lipman 2018), a pair of
extension and restriction operators are designed to trans-
late between point clouds and volumetric functions, such
that continuous volumetric convolution could be applied.
Our method could be considered belonging to this category
from the perspective of domain transformation. However,
different from existing methods, our domain mapping func-
tion is automatically learned rather than by handcrafted de-
sign. Moreover, instead of utilizing complex convolutions,
we employ the classic 2D convolution for feature aggrega-
tion. As a result, our method is more efficient in computation
as well as effective at point feature learning.

Method
In this work, we focus on two tasks: point cloud classifica-
tion and segmentation, and present two architectures corre-
spondingly, as illustrated in Fig. 1. The input is a point set
P = {pi ∈ Rd, i = 1, · · · , N}, where each point pi is a
vector of coordinates plus additional features, such as nor-
mal and color. The output will be a 1 ×K score vector for
classification with K classes, or an N ×M score matrix for
segmentation with M semantic labels. Our network, termed
RCNet, consists of two components: the recurrent set en-

coder and the convolutional feature aggregator. The recur-
rent set encoder aims to extract subregional features from
input point cloud, while convolutional feature aggregator is
responsible for aggregating these extracted features hierar-
chically. Below we explain their details.

Recurrent Set Encoder Given an unordered point set, the
recurrent set encoder firstly partitions the ambient space
into a set of parallel beams, and then divides the points
into subgroups accordingly (see Fig. 1). The beams are uni-
formly distributed in a structured manner, spanning a 2D
lattice. In particular, suppose the width, height and depth
of a beam extends along x, y and z axis, respectively. Let
r and s be the hyper-parameters controlling the number of
beams: w = (xmax − xmin)/r and h = (ymax − ymin)/s,
where w, h are the beam width and height; [xmin, xmax] and
[ymin, ymax] are the maximum spanning ranges of points.
Then a point with coordinate (xk, yk, zk) is assigned to the
(i, j)-th beam if xk−xmin ∈ [(i−1)w, iw) and yk−ymin ∈
[(j−1)h, jh). In our implementation, since the point clouds
are normalized to fit within a unit ball, we can simply set
xmin = ymin = −1 and xmax = ymax = 1. The subgroups
of points are denoted by {Sij}r,si=1,j=1. Note that depend-
ing on the tasks, it is also possible to perform non-uniform
partition (Wang et al. 2017). In this work we only focus on
uniformly partitioned beams.

Given points in subgroup Sij , we treat them as a se-
quential signal and process it with an RNN. In particu-
lar, before being fed to RNN, points within each beam are
sorted along the beam depth (according to their z coordi-
nates). The RNN is single-directional, implemented using
Gated Recurrent Units (GRU) (Chung et al. 2014) with 2
layers. To the best of our knowledge, our network is the
first to effectively use an RNN to handle 3D point sets di-
rectly. Interestingly, it has been previously observed that
an RNN performs poorly on a 3D point cloud due to the
lack of a unique and stable ordering (Qi et al. 2017a;
Vinyals, Bengio, and Kudlur 2016). The key to our success
is the beam partition strategy. With the relatively dense parti-
tioning, the points within each beam is of moderate size, and
can be approximately considered distributed along a 1D line.
In another word, the RNN is approximately handling point
signal of moderate length in a 1D space. This facilitates the
learning of RNN and makes it behave quite robustly with
respect to the input perturbation.

The output of recurrent set encoder is a grid of 1D feature
vectors, which are taken as a 2D feature map and fed into
the subsequent 2D CNN aggregator:

I =

R(S11) . . . R(S1s)
...

. . .
...

R(Sr1) . . . R(Srs)

 , (1)

where R is a shared RNN with hidden size `, and
I ∈ Rr×s×`. Note that, we only utilize RNN to encode
nonempty beams, and for those empty ones we pad zero vec-
tors at the corresponding positions of I .

Convolutional Feature Aggregator We first note that the
features encoded by RNN are actually non-local, as the

points within each beam span a large range along the beam
depth. To build a global shape descriptor, we need to con-
nect these non-local features. A natural choice is using 2D
convolutional neural network, given the structured output I
in Eq.(1). Being efficient and powerful at multi-scale feature
learning, a 2D CNN aggregator brings much computational
and modeling advantage compared to the sophisticated ag-
gregators in previous methods, as shown in the experiment
section. Further, the strength of a 2D CNN alleviates the
modeling burden of the recurrent encoder and boosts the
overall performance. In this work, we utilize a simple shal-
low CNN architecture to validate our idea (see Fig. 1), and
leave advanced architectures for future exploration.

The aggregated global feature could be used for shape
classification directly, or combined with the per-point fea-
tures for semantic segmentation, as illustrated in Fig. 1. Note
that, for segmentation task we inject additional subregional
information into the points via feature propagation, so as to
facilitate the discriminative point feature learning.

Remarks We stress a few key properties of RCNet below.

1. It is invariant to point permutation, a result derived from
point sorting within beams.

2. The amount of context information embedded in the 2D
feature maps can be controlled with beam sizes. Smaller
beams would preserve richer spatial contexts while larger
ones would contain less. In the extreme case, when the
ambient space is trivially partitioned, i.e., there is only
one beam, RCNet degenerates to the vanilla RNN model
for point clouds (Qi et al. 2017a). The effect of beam size
will be investigated in the experiment section in detail.

3. RCNet is computationally efficient and converges fast
during training, due to the benefits of 2D CNN. Besides,
unlike vanilla RNN, our recurrent encoder is paralleliz-
able with each RNN processing a small portion of points.
This further facilitates the computational efficiency.

RCNet Ensemble

In RCNet, the beam depth extends along a certain direction,
i.e., z axis. While being effective at extracting subregional
features in this direction, the recurrent encoder does not ex-
plicitly consider features along other directions. To further
facilitate the point feature learning, we propose to capture
geometric details in different directions and use an ensem-
ble of RCNets, of which each single model has different
beam depth directions. The ensemble unifies a set of “weak”
RCNets and is able to learn richer geometric features. The
resulting model, termed RCNet-E, is flexible and achieves
better performance, as shown in our experiments. In prac-
tice, we implement an ensemble by independently training
three RCNets, whose beam depths extend along x, y and z
axes respectively. Then we simply average their predictions
to produce the final results. Note that, although multiple net-
works are used, thanks to the high efficiency of RCNet, their
ensemble is still quite efficient. Moreover, such ensemble is
amenable to parallelization for further speed-up.

Experiments
In this section, we evaluate our RCNet on multiple bench-
mark datasets, including ModelNet10/40 (Wu et al. 2015),
ShapeNet part segmentation (Yi et al. 2016), and S3DIS
(Armeni et al. 2016). In addition, we analyze the properties
of RCNet in details with extensive controlled experiments.
Code can be found on the authors’ homepage.

Ablation Study and a Baseline Model To validate the ad-
vantages of our recurrent set encoder, we compare it with
the widely used pooling-based feature aggregator. In par-
ticular, we replace the recurrent encoder in RCNet with an
MLP, consisting of two layers whose sizes are the same with
that of the corresponding RNN hidden layers. This MLP is
shared and applied to each point, followed by a global max-
pooling to aggregate the subregional features. Meanwhile,
the remaining parts of the model are kept the same with RC-
Net. We take this modified network as a baseline model. As
demonstrated in the following section, our recurrent set en-
coder is more effective at describing the spatial layout and
geometric relationships than pooling-based technique.

Shape Classification
Datasets ModelNet10 and ModelNet40 (Wu et al. 2015)
are standard benchmarks for shape classification. Model-
Net10 is composed of 3991 train and 908 test CAD models
from 10 classes, while ModelNet40 consists of 12311 mod-
els from 40 categories, with 9843 models used for training
and 2468 for testing. These models are originally organized
with triangular meshes, and we follow the same protocol of
(Qi et al. 2017a; 2017b) to convert them into point clouds. In
particular, for each model, we uniformly sample 1024 points
from the mesh, and then normalize them to fit within a unit
ball, centered at the origin. We only use the point positions
as input features and discard the normal information.

Training Following (Qi et al. 2017a; 2017b; Klokov and
Lempitsky 2017), we apply data augmentation during the
training procedure by randomly translating and scaling the
objects, as well as perturbing the point positions. We set the
hyper-parameters r = 32 and s = 32. The learning rate is
initialized to 0.001 with a decay of 0.1 every 30 epochs. The
networks are optimized using Adam (Kingma and Ba 2015),
and it takes about 2 ∼ 3 hours for the training to converge
on a single NVIDIA GTX 1080 Ti GPU.

Results We compare RCNet with several state-of-the-arts:
VoxNet (Maturana and Scherer 2015b), volumetric CNN (Qi
et al. 2016), O-CNN (Wang et al. 2017), MVCNN (Su et al.
2015), ECC (Simonovsky and Komodakis 2017), DeepSets
(Ravanbakhsh, Schneider, and Poczos 2017), vanilla RNN
and PointNet (Qi et al. 2017a), PointNet++ (Qi et al. 2017b),
KD-Net (Klokov and Lempitsky 2017), Pointwise CNN
(Hua, Tran, and Yeung 2018), SO-Net (Li, Chen, and Lee
2018), KCNet (Shen et al. 2018), SCN (Xie et al. 2018), and
PCNN (Atzmon, Maron, and Lipman 2018). The results are
demonstrated in Table 1.

We observe that a single RCNet is able to achieve compet-
itive results against the state-of-the-arts, and with ensemble

Method # Points Input MN10 MN40
VoxNet - Vox 92.0 83.0

Vol. CNN - Vox - 89.9
O-CNN - Vox - 90.6

MVCNN - Img - 90.1
ECC 1000 PC 90.8 87.4

DeepSets 5000 PC - 90.0
RNN (vanilla) 1024 PC - 78.5

PointNet 1024 PC - 89.2
PointNet++ 1024 PC - 90.7

KD-Net 1024 PC 93.3 90.6
Pointwise CNN - PC - 86.1

SO-Net 2048 PC 94.1 90.9
KCNet 1024 PC 94.4 91.0
SCN 1024 PC - 90.0

PCNN 1024 PC 94.9 92.3
Baseline (ours) 1024 PC 92.5 89.1

Baseline-E (ours) 1024 PC 93.0 90.8
RCNet (ours) 1024 PC 94.7 91.6

RCNet-E (ours) 1024 PC 95.6 92.3

Table 1: Classification accuracies on ModelNet datasets.
(“Vox”: Voxels; “Img”: Images; “PC”: Point Clouds.)

the performance is further boosted. In particular, RCNet per-
forms better than most existing approaches. While obtaining
similar accuracy to PCNN, our network is significantly sim-
pler in design. On the other hand, compared to the baseline
model, RCNet outperforms it by a large margin. This vali-
dates the effectiveness of recurrent encoder at modeling the
relative relationships among points. It is worth noting that,
in (Li, Chen, and Lee 2018) the SO-Net also attempted to
apply the standard CNN to the generated image-like feature
maps, but only led to decreased performance. In contrast,
our RCNet is better at incorporating the advantages of CNN
into point cloud analysis, thanks to the recurrent set encoder.

Finally, our RCNet is computationally efficient. In par-
ticular, a single RCNet can be trained in about 3 hours.
This is much faster than PointNet++ and PCNN, both of
which require about 20 hours for training (Qi et al. 2017b;
Atzmon, Maron, and Lipman 2018). Besides, as shown in
Table 2, on average it takes about 0.4 milliseconds for RC-
Net to forward a shape, while PointNet++ and PCNN re-
quire 2.8 and 16.8 milliseconds, respectively1. Table 2 also
summarizes the number of parameters of different networks.
Interestingly, although our model has larger size, it still runs
faster than other competitors. This validates that the classic
RNN and 2D CNN, which are well supported at both soft-
ware and hardware levels, contribute largely to the model ef-
ficiency. In contrast, since PointNet++ need to perform ad-
ditional K-nearest neighbor query on the fly on GPU, it is
much less efficient in spite of the smaller model size. Simi-

1For PCNN, we run the code released by the authors
(https://github.com/matanatz/pcnn), with the default pointconv
configuration. For PointNet++, we use the official implementation
(https://github.com/charlesq34/pointnet2), and test the MSG model
with the default network setting.

Method Infer. Time (ms) # Param. (M)
Class. Seg. Class. Seg.

RCNet (ours) 0.4 4.5 13.3 16.7
RCNet-E (ours) 0.6 4.8 39.9 50.1

PointNet++ 2.8 11.9 1.0 1.7
PCNN 16.8 109.3 8.1 5.4

SPLATNet3D - 23.1 - 2.7

Table 2: Comparison of inference time and model size for
different networks. Classification and segmentation are per-
formed on ModelNet40 and ShapeNet part datasets, respec-
tively. Time is measured in milliseconds, which correspond
to the cost of forwarding a shape on average. The hardware
used is an Intel i7-6850K CPU and a single NVIDIA GTX
1080 Ti GPU. “M” stands for million.

larly, PCNN and SPLATNet3D rely on sophisticated geomet-
ric transformations and complex convolutional operations.
These operations are much less GPU-friendly and cause a
lot of overhead in practice. It is worth mentioning that, since
RCNet-E is naturally parallelizable, its inference time is al-
most the same with that of a single RCNet.

Shape Part Segmentation
Dataset and Configuration For shape part segmentation,
the task is to classify each point of a point cloud into one
of the predefined part categories. We evaluate the proposed
method on the challenging ShapeNet part dataset (Yi et al.
2016), which contains 16881 shapes from 16 categories. The
shapes are consistently aligned and normalized to fit within a
unit ball. For each shape, it is annotated with 2-6 part labels,
and in total there are 50 different parts. We sample 2048
points for each shape following (Qi et al. 2017a; 2017b). As
in (Qi et al. 2017b), apart from point positions we also use
normal information as input features. Following the setting
in (Yi et al. 2016), we evaluate our methods assuming that
the category of the input 3D shape is already known. The
segmentation results are reported with the standard metric
mIoU (Qi et al. 2017a). We use the official train/test split
as in (Chang et al. 2015) in our experiment. We follow the
same network configuration with the classification task.

Results Table 3 compares RCNet with the following state-
of-the-art point cloud-based methods: PointNet (Qi et al.
2017a), PointNet++ (Qi et al. 2017b), Kd-Net (Klokov and
Lempitsky 2017), SPLATNet3D (Su et al. 2018), SO-Net
(pre-trained) (Li, Chen, and Lee 2018), RSNet (Huang,
Wang, and Neumann 2018), KCNet (Shen et al. 2018), A-
SCN (Xie et al. 2018), and PCNN (Atzmon, Maron, and
Lipman 2018). In Table 3, we report the instance average
mIoU as well as the mIoU scores for each category.

As is shown, our method achieves better results than the
state-of-the-art works. In particular, a single RCNet is able
to achieve average mIoU of 85.3, which is competitive with
the performance of PointNet++ and PCNN. With ensemble,
the accuracy is further boosted and our method dominates
most of the shape categories. Some qualitative segmenta-
tion results are illustrated in Fig. 2. Specifically, the first

mean aero bag cap car chair ear-p guitar knife lamp laptop motor mug pistol rocket skate table
shapes 2690 76 55 898 3758 69 787 392 1547 451 202 184 283 66 152 5271
PointNet 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6

PointNet++ 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6
Kd-Net 82.3 80.1 74.6 74.3 70.3 88.6 73.5 90.2 87.2 81.0 94.9 57.4 86.7 78.1 51.8 69.9 80.3

SPLATNet3D 84.6 81.9 83.9 88.6 79.5 90.1 73.5 91.3 84.7 84.5 96.3 69.7 95.0 81.7 59.2 70.4 81.3
SO-Net (p.t.) 84.9 82.8 77.8 88.0 77.3 90.6 73.5 90.7 83.9 82.8 94.8 69.1 94.2 80.9 53.1 72.9 83.0

RSNet 84.9 82.7 86.4 84.1 78.2 90.4 69.3 91.4 87.0 83.5 95.4 66.0 92.6 81.8 56.1 75.8 82.2
KCNet 84.7 82.8 81.5 86.4 77.6 90.3 76.8 91.0 87.2 84.5 95.5 69.2 94.4 81.6 60.1 75.2 81.3
A-SCN 84.6 83.8 80.8 83.5 79.3 90.5 69.8 91.7 86.5 82.9 96.0 69.2 93.8 82.5 62.9 74.4 80.8
PCNN 85.1 82.4 80.1 85.5 79.5 90.8 73.2 91.3 86.0 85.0 95.7 73.2 94.8 83.3 51.0 75.0 81.8

Baseline (ours) 84.6 83.3 76.8 87.6 78.6 90.3 73.7 90.9 86.8 82.1 95.5 69.8 94.3 82.6 58.4 76.0 81.7
Baseline-E (ours) 85.3 84.1 77.0 87.4 79.8 90.6 73.9 91.5 87.0 83.1 95.6 70.0 94.4 83.4 58.1 75.6 82.4

RCNet (ours) 85.3 84.4 80.1 89.6 78.6 90.5 76.3 91.4 87.3 82.5 96.1 73.1 94.7 84.0 61.0 76.1 82.6
RCNet-E (ours) 86.0 85.3 81.1 90.0 79.9 91.1 77.0 91.8 87.3 84.1 96.5 75.1 95.1 84.8 61.3 76.4 83.1

Table 3: Results on ShapeNet part segmentation. mIoU metric is used for evaluation. The instance average mIoU as well as
mIoU scores for each shape category are listed. Our RCNet-E outperforms the state-of-the-arts in most categories and achieves
the best instance average mIoU.

Figure 2: Visualization of ShapeNet part segmentation re-
sults. From top to bottom: ground truth, baseline, baseline-
E, RCNet, RCNet-E. From left to right: airplane, motorbike,
lamp, table.

two columns show that both RCNet and RCNet-E are able
to handle the small details of objects well. The third col-
umn indicates that the ensemble helps correct the prediction
error of a single model, and is better at capturing the fine-
grain semantics than the baseline methods. The last column
corresponds to a failure case, which is possibly due to the
imperfect model representation ability or caused by shape
semantic ambiguity (i.e., the table board in the middle could
be interpreted as either table support or tabletop).

Method Mean IoU Overall accuracy
PointNet 47.71 78.62
A-SCN 52.72 81.59

Pointwise CNN - 81.50
Baseline (ours) 50.31 81.57

Baseline-E (ours) 52.38 82.98
RCNet (ours) 51.40 82.01

RCNet-E (ours) 53.21 83.58

Table 4: Segmentation results on S3DIS dataset. Mean IoU
and point-wise accuracy are listed.

In Table 2, we compare the computational efficiency of
different networks on part segmentation task. As is shown,
our method is more efficient than the state-of-the-arts2.

Semantic Scene Segmentation
Dataset and Configuration We evaluate our RCNet on
the scene parsing task with Standford 3D indoor scene
dataset (S3DIS) (Armeni et al. 2016). S3DIS consists of 6
scanned large-scale areas, which in total have 271 rooms.
Each point in the scene point cloud is annotated with one of
the 13 semantic categories. Following (Qi et al. 2017a), we
pre-process the data by splitting the scene points into rooms,
and then subdividing the rooms into small blocks with area
1m by 1m (measured on the floor). As in (Qi et al. 2017a),
we also use k-fold strategy for training and testing. At train-
ing time we randomly sample 2048 points for each block,
but use all the points during testing. We represent each point
using 9 attributes, including XYZ coordinates, RGB values
and normalized coordinates as to the room. The same shape
segmentation RCNet is used for this task.

Results We compare our RCNet with PointNet (Qi et al.
2017a), A-SCN (Xie et al. 2018) and Pointwise CNN (Hua,

2For SPLATNet3D, we run the code implemented by the au-
thors (https://github.com/NVlabs/splatnet), with the default net-
work configuration. For PointNet++, the MSG model with one hot
vector is tested. For PCNN, we use the default pointconv configu-
ration. In the experiment we sample 2048 points for each shape.

Figure 3: Visualization of S3DIS segmentation results. From
top to bottom: input scene, ground truth, baseline, baseline-
E, RCNet, RCNet-E.

Tran, and Yeung 2018). The results are reported in Table 4.
As is shown, our RCNet improves A-SCN by about 0.5% in
mean IoU and 2% in overall accuracy. We visualize a few
segmentation results in Fig. 3. It can be observed that RC-
Net is able to output smooth predictions and segment the
small objects well. In contrast, the baseline methods tend to
produce large prediction errors. This shows the benefits of
our recurrent set encoder and the 2D CNN as feature aggre-
gators. With ensemble, the segmentation accuracy is further
boosted and our RCNet-E achieves the best results.

Architecture Analysis
In this section we show the effects of network hyper-
parameters and validate the design choices through a se-
ries of controlled experiments. We consider the following
two main contributory factors on model performance: (1) the
size of beams; (2) the number of points. We use ModelNet40
dataset as the test bed for comparisons of different options.
Unless explicitly noted, all the experimental settings are the
same with those in the shape classification experiment.

The Size of Beams The beam size controls how much lo-
cal context information would be utilized, and is a major
contributory factor for the network performance. For RC-
Net, large beams will lead to a small feature map for the
downstream CNN. This would increase the efficiency of
CNN but in turn result in the loss of fine-scale geometric de-
tails. Moreover, beams with large size would be filled with
too many points, and as a result the RNN would perform
poorly in feature modeling. On the other hand, if the size of
beams is too small, the subregions would contain insufficient

r × s 8× 8 16× 16 32× 32 64× 64 128× 128
Baseline 77.2 86.3 89.1 89.3 86.7
RCNet 87.5 90.2 91.6 90.9 89.8

Table 5: The influence of beam size on network perfor-
mance. The smaller the hyper-parameters r and s, the larger
the beams, and vice versa. The experiments are conducted
on ModelNet40, and the metric is classification accuracy.

Point Baseline + DP RCNet + DP Baseline RCNet
1024 88.9 91.1 88.2 90.2
512 88.2 90.4 68.2 76.2
256 87.7 90.2 35.3 38.1
128 86.4 87.8 17.8 24.9

Table 6: Experiments on robustness to non-uniform and
sparse data. DP stands for random point dropout during
training. The experiments are conducted on ModelNet40.

amount of points, which is adverse to the feature learning.
We conduct several experiments to investigate the influ-

ence of beam size on the network performance. In partic-
ular, we test RCNet with different specifications of hyper-
parameters r and s. The results are reported in Table 5. As
is shown, both larger and smaller beam sizes would hurt the
performance, and r × s = 32 × 32 leads to the best re-
sults. Note that, although beam size is an important param-
eter on the performance, our RCNet is still quite robust to
this factor. In contrast, the max-pooling based encoder be-
haves quite sensitively and the performance decreases a lot
with large beams. This further validates that pooling is a rel-
atively coarse technique for exploiting geometric details.

The Number of Points Point clouds obtained from sen-
sors in real world usually suffer from data corruptions,
which lead to non-uniform data with varying densities (Qi
et al. 2017b). To validate the robustness of our model to
such situations, we randomly dropout the number of points
in testing and conduct two different groups of experiments.
In the first group, the models are trained on uniform point
clouds without random point dropout, while in the second
group the models are trained with random dropout as well.
In the experiment, we set r = s = 32 as in the shape classi-
fication task. The results are shown in Table 6. We observe
that models trained with random point dropout (DP) during
training are fairly robust to the sampling density variation,
with drop of accuracy less than 3.3% when point number
decreases from 1024 to 128. In contrast, those trained only
on uniform data fail to generalize well to the cases of non-
uniform data. Note that, despite the drop of accuracy, our
RCNet still achieves better performance than the baseline
model when trained without DP. This validates the superi-
ority of RNN in subregional feature extraction compared to
max-pooling.

Conclusion and Discussion
In this work we present a new deep neural network for 3D
point cloud processing. Our network consists of a recurrent

set encoder and a 2D CNN. The recurrent set encoder parti-
tions the input point clouds into several parts, which are en-
coded via a shared RNN. The encoded part features are later
assembled in a structured manner and fed into a 2D CNN for
global feature learning. Such design leads to an efficient as
well as effective network, thanks to the benefits of CNN and
RNN. Experiments on four representative datasets show that
our method competes favorably with the state-of-the-arts in
terms of accuracy and efficiency. We also conduct extensive
experiments to further analyze the network properties, and
show that our method is quite robust to several key factors
affecting the model performance.

Finally, we note that the proposed recurrent set encoder
can be generalized to other contexts. For example, we can
build a KNN graph for the input point cloud and model the
local neighborhood for each point with recurrent encoder.
In particular, we can sort the k nearest neighbor points ac-
cording to their distances to the query point, and then apply
RNN to this point sequence for local feature learning. This is
different from KCNet (Shen et al. 2018) which uses a local
point-set kernel, and will be explored in the future.

Acknowledgments
This work was partially supported by NSF IIS-1718802,
CCF-1733866, and CCF-1733843.

References
Armeni, I.; Sener, O.; Zamir, A. R.; Jiang, H.; Brilakis, I.;
Fischer, M.; and Savarese, S. 2016. 3d semantic parsing of
large-scale indoor spaces. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 1534–1543.
Atzmon, M.; Maron, H.; and Lipman, Y. 2018. Point con-
volutional neural networks by extension operators. In ACM
SIGGRAPH.
Boscaini, D.; Masci, J.; Melzi, S.; Bronstein, M. M.; Castel-
lani, U.; and Vandergheynst, P. 2015. Learning class-specific
descriptors for deformable shapes using localized spectral
convolutional networks. Comput. Graph. Forum 34(5):13–
23.
Bronstein, M. M.; Bruna, J.; LeCun, Y.; Szlam, A.; and Van-
dergheynst, P. 2017. Geometric deep learning: Going be-
yond euclidean data. IEEE Signal Process. Mag. 34(4):18–
42.
Bruna, J.; Zaremba, W.; Szlam, A.; and LeCun, Y. 2014.
Spectral networks and locally connected networks on
graphs. In International Conference on Learning Represen-
tations (ICLR).
Chang, A. X.; Funkhouser, T. A.; Guibas, L. J.; Hanrahan, P.;
Huang, Q.; Li, Z.; Savarese, S.; Savva, M.; Song, S.; Su, H.;
Xiao, J.; Yi, L.; and Yu, F. 2015. Shapenet: An information-
rich 3d model repository. CoRR abs/1512.03012.
Chen, X.; Ma, H.; Wan, J.; Li, B.; and Xia, T. 2017. Multi-
view 3d object detection network for autonomous driving. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 6526–6534.

Chung, J.; Gülçehre, Ç.; Cho, K.; and Bengio, Y. 2014. Em-
pirical evaluation of gated recurrent neural networks on se-
quence modeling. In NIPS Workshop on Deep Learning.
Defferrard, M.; Bresson, X.; and Vandergheynst, P. 2016.
Convolutional neural networks on graphs with fast localized
spectral filtering. In Advances in Neural Information Pro-
cessing Systems (NIPS), 3837–3845.
Hua, B.-S.; Tran, M.-K.; and Yeung, S.-K. 2018. Point-
wise convolutional neural networks. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 984–
993.
Huang, Q.; Wang, W.; and Neumann, U. 2018. Recur-
rent slice networks for 3d segmentation of point clouds. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2626–2635.
Jaderberg, M.; Simonyan, K.; Zisserman, A.; and
Kavukcuoglu, K. 2015. Spatial transformer networks.
In Advances in Neural Information Processing Systems
(NIPS), 2017–2025.
Kalogerakis, E.; Averkiou, M.; Maji, S.; and Chaudhuri, S.
2017. 3d shape segmentation with projective convolutional
networks. In IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 6630–6639.
Kehoe, B.; Patil, S.; Abbeel, P.; and Goldberg, K. 2015. A
survey of research on cloud robotics and automation. IEEE
Trans. Automation Science and Engineering 12(2):398–409.
Kingma, D. P., and Ba, J. 2015. Adam: A method for
stochastic optimization. In International Conference on
Learning Representations (ICLR).
Kipf, T. N., and Welling, M. 2017. Semi-supervised classi-
fication with graph convolutional networks. In International
Conference on Learning Representations (ICLR).
Klokov, R., and Lempitsky, V. S. 2017. Escape from cells:
Deep kd-networks for the recognition of 3d point cloud
models. In IEEE International Conference on Computer Vi-
sion (ICCV), 863–872.
Li, R.; Wang, S.; Zhu, F.; and Huang, J. 2018. Adaptive
graph convolutional neural networks. In AAAI.
Li, J.; Chen, B. M.; and Lee, G. H. 2018. So-net: Self-
organizing network for point cloud analysis. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR).
Liu, F.; Li, S.; Zhang, L.; Zhou, C.; Ye, R.; Wang, Y.; and
Lu, J. 2017. 3dcnn-dqn-rnn: A deep reinforcement learn-
ing framework for semantic parsing of large-scale 3d point
clouds. In IEEE International Conference on Computer Vi-
sion (ICCV), 5679–5688.
Liu, M. 2016. Robotic online path planning on point cloud.
IEEE Trans. Cybernetics 46(5):1217–1228.
Maturana, D., and Scherer, S. 2015a. 3d convolutional
neural networks for landing zone detection from lidar. In
IEEE International Conference on Robotics and Automation
(ICRA), 3471–3478.
Maturana, D., and Scherer, S. 2015b. Voxnet: A 3d con-
volutional neural network for real-time object recognition.

In IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 922–928.
Qi, C. R.; Su, H.; Nießner, M.; Dai, A.; Yan, M.; and Guibas,
L. J. 2016. Volumetric and multi-view cnns for object classi-
fication on 3d data. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 5648–5656.
Qi, C. R.; Su, H.; Mo, K.; and Guibas, L. J. 2017a. Pointnet:
Deep learning on point sets for 3d classification and segmen-
tation. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 77–85.
Qi, C. R.; Yi, L.; Su, H.; and Guibas, L. J. 2017b. Point-
net++: Deep hierarchical feature learning on point sets in a
metric space. In Advances in Neural Information Processing
Systems (NIPS), 5105–5114.
Ravanbakhsh, S.; Schneider, J.; and Poczos, B. 2017. Deep
learning with sets and point clouds. In International Confer-
ence on Learning Representations Workshop (ICLRW).
Riegler, G.; Ulusoy, A. O.; and Geiger, A. 2017. Octnet:
Learning deep 3d representations at high resolutions. In
IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 6620–6629.
Sedaghat, N.; Zolfaghari, M.; and Brox, T. 2017.
Orientation-boosted voxel nets for 3d object recognition. In
British Machine Vision Conference (BMVC).
Shen, Y.; Feng, C.; Yang, Y.; and Tian, D. 2018. Mining
point cloud local structures by kernel correlation and graph
pooling. In IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR).
Simonovsky, M., and Komodakis, N. 2017. Dynamic
edgeconditioned filters in convolutional neural networks on
graphs. In IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR).
Su, H.; Maji, S.; Kalogerakis, E.; and Learned-Miller, E. G.
2015. Multi-view convolutional neural networks for 3d
shape recognition. In IEEE International Conference on
Computer Vision (ICCV), 945–953.
Su, H.; Jampani, V.; Sun, D.; Maji, S.; Kalogerakis, E.;
Yang, M.; and Kautz, J. 2018. Splatnet: Sparse lattice net-
works for point cloud processing. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).
Tatarchenko, M.; Dosovitskiy, A.; and Brox, T. 2017. Oc-
tree generating networks: Efficient convolutional architec-
tures for high-resolution 3d outputs. In IEEE International
Conference on Computer Vision (ICCV), 2107–2115.
Tchapmi, L. P.; Choy, C. B.; Armeni, I.; Gwak, J.; and
Savarese, S. 2017. Segcloud: Semantic segmentation of
3d point clouds. In International Conference on 3D Vision
(3DV).
Vinyals, O.; Bengio, S.; and Kudlur, M. 2016. Order mat-
ters: Sequence to sequence for sets. In International Confer-
ence on Learning Representations (ICLR).
Wang, P.; Liu, Y.; Guo, Y.; Sun, C.; and Tong, X. 2017.
O-CNN: octree-based convolutional neural networks for 3d
shape analysis. ACM Trans. Graph. 36(4):72:1–72:11.
Wang, S.; Suo, S.; Ma, W.-C.; Pokrovsky, A.; and Urtasun,

R. 2018. Deep parametric continuous convolutional neu-
ral networks. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2589–2597.
Wu, Z.; Song, S.; Khosla, A.; Yu, F.; Zhang, L.; Tang, X.;
and Xiao, J. 2015. 3d shapenets: A deep representation for
volumetric shapes. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 1912–1920.
Xie, S.; Liu, S.; Chen, Z.; and Tu, Z. 2018. Atten-
tional shapecontextnet for point cloud recognition. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR).
Yi, L.; Kim, V. G.; Ceylan, D.; Shen, I.; Yan, M.; Su, H.;
Lu, C.; Huang, Q.; Sheffer, A.; and Guibas, L. J. 2016. A
scalable active framework for region annotation in 3d shape
collections. ACM Trans. Graph. 35(6):210:1–210:12.
Yi, L.; Su, H.; Guo, X.; and Guibas, L. J. 2017. Syncspec-
cnn: Synchronized spectral CNN for 3d shape segmentation.
In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 6584–6592.

